92 research outputs found

    Spacecraft Dynamics and Control Program at AFRPL

    Get PDF
    A number of future DOD and NASA spacecraft such as the space based radar will be not only an order of magnitude larger in dimension than the current spacecraft, but will exhibit extreme structural flexibility with very low structural vibration frequencies. Another class of spacecraft (such as the space defense platforms) will combine large physical size with extremely precise pointing requirement. Such problems require a total departure from the traditional methods of modeling and control system design of spacecraft where structural flexibility is treated as a secondary effect. With these problems in mind, the Air Force Rocket Propulsion Laboratory (AFRPL) initiated research to develop dynamics and control technology so as to enable the future large space structures (LSS). AFRPL's effort in this area can be subdivided into the following three overlapping areas: (1) ground experiments, (2) spacecraft modeling and control, and (3) sensors and actuators. Both the in-house and contractual efforts of the AFRPL in LSS are summarized

    nSharma: Numerical Simulation Heterogeneity Aware Runtime Manager for OpenFOAM

    Get PDF
    CFD simulations are a fundamental engineering application,implying huge workloads, often with dynamic behaviour due to run-time mesh refinement. Parallel processing over heterogeneous distributedmemory clusters is often used to process such workloads. The executionof dynamic workloads over a set of heterogeneous resources leads to loadimbalances that severely impacts execution time, when static uniformload distribution is used. This paper proposes applying dynamic, het-erogeneity aware, load balancing techniques within CFD simulations.nSharma, a software package that fully integrates with OpenFOAM, ispresented and assessed. Performance gains are demonstrated, achievedby reducing busy times standard deviation among resources, i.e. hetero-geneous computing resources are kept busy with useful work due to aneffective workload distribution. To best of authors’ knowledge, nSharmais the first implementation and integration of heterogeneity aware loadbalancing in OpenFOAM and will be made publicly available in order tofoster its adoption by the large community of OpenFOAM users.The authors would like to thank the financial funding by FEDER through the COMPETE 2020 Program, the National Funds through FCT under the projects UID/CTM/50025/2013. The first author was partially funded by the PT-FLAD Chair on Smart Cities & Smart Governance and also by the School of Engineering, University of Minho within project Performance Portability on Scalable Heterogeneous Computing Systems. The authors also wish to thank Kyle Mooney for making available his code supporting migration of dynamically refined meshes, as well as acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC resources

    Advanced Multilevel Node Separator Algorithms

    Full text link
    A node separator of a graph is a subset S of the nodes such that removing S and its incident edges divides the graph into two disconnected components of about equal size. In this work, we introduce novel algorithms to find small node separators in large graphs. With focus on solution quality, we introduce novel flow-based local search algorithms which are integrated in a multilevel framework. In addition, we transfer techniques successfully used in the graph partitioning field. This includes the usage of edge ratings tailored to our problem to guide the graph coarsening algorithm as well as highly localized local search and iterated multilevel cycles to improve solution quality even further. Experiments indicate that flow-based local search algorithms on its own in a multilevel framework are already highly competitive in terms of separator quality. Adding additional local search algorithms further improves solution quality. Our strongest configuration almost always outperforms competing systems while on average computing 10% and 62% smaller separators than Metis and Scotch, respectively

    Numerical Investigation on Charring Ablator Geometric Effects: Study of Stardust Sample Return Capsule Heat Shield

    Get PDF
    Sample geometry is very influential in small charring ablative articles where 1D assumption might not be accurate. In heat shield design, 1D is often assumed since the nose radius is much larger than the thickness of charring. Whether the 1D assumption is valid for the heat shield is unknown. Therefore, the geometric effects of Stardust sample return capsule heat shield are numerically studied using a material response program. The developed computer program models material charring, conductive heat transfer, surface energy balance, pyrolysis gas transport and orthotropic material properties in 3D Cartesian coordinates. Simulation results show that the centerline temperatures predicted by 3D model are quite close to 1D model at the surface, but not the case inside the material. The pyrolysis surface gas blowing behaviors are quite similar but differences are observed at later time. Orthotropic model predicted a very different heat shield response to both the isotropic model and the 1D model

    Numerical Investigation of Pyrolysis Gas Blowing Pattern and Thermal Response using Orthotropic Charring Ablative Material

    Get PDF
    An orthotropic material model is implemented in a three-dimensional material response code, and numerically studied for charring ablative material. Model comparison is performed using an iso-Q sample geometry. The comparison is presented using pyrolysis gas streamlines and time series of temperature at selected virtual thermocouples. Results show that orthotropic permeability affects both pyrolysis gas flow and thermal response, but orthotropic thermal conductivity essentially changes the thermal performance of the material. The effect of orthotropic properties may have practical use such that the material performance can be manipulated by altering the angle of orthotropic orientation

    Recent Advances in Graph Partitioning

    Full text link
    We survey recent trends in practical algorithms for balanced graph partitioning together with applications and future research directions

    The Deadly Chytrid Fungus: A Story of an Emerging Pathogen

    Get PDF
    [Extract] Emerging infectious diseases present a great challenge for the health of both humans and wildlife. The increasing prevalence of drug-resistant fungal pathogens in humans [1] and recent outbreaks of novel fungal pathogens in wildlife populations [2] underscore the need to better understand the origins and mechanisms of fungal pathogenicity. One of the most dramatic examples of fungal impacts on vertebrate populations is the effect of the amphibian disease chytridiomycosis, caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd).\ud Amphibians around the world are experiencing unprecedented population losses and local extinctions [3]. While there are multiple causes of amphibian declines, many catastrophic die-offs are attributed to Bd [4],[5]. The chytrid pathogen has been documented in hundreds of amphibian species, and reports of Bd's impact on additional species and in additional geographic regions are accumulating at an alarming rate (e.g., see http://www.spatialepidemiology.net/bd). Bd is a microbial, aquatic fungus with distinct life stages. The motile stage, called a zoospore, swims using a flagellum and initiates the colonization of frog skin. Within the host epidermal cells, a zoospore forms a spherical thallus, which matures and produces new zoospores by dividing asexually, renewing the cycle of infection when zoospores are released to the skin surface (Figure 1). Bd is considered an emerging pathogen, discovered and described only a decade ago [6],[7]. Despite intensive ecological study of Bd over the last decade, a number of unanswered questions remain. Here we summarize what has been recently learned about this lethal pathogen

    Detection of Batrachochytrium dendrobatidis in amphibians imported into the UK for the pet trade

    Get PDF
    There is increasing evidence that the global spread of the fungal pathogen Batrachochytrium dendrobatidis (Bd) has been facilitated by the international trade in amphibians. Bd was first detected in the UK in 2004, and has since been detected in multiple wild amphibian populations. Most amphibians imported into the UK for the pet trade from outside the European Union enter the country via Heathrow Animal Reception Centre (HARC), where Bd positive animals have been previously detected. Data on the volume, diversity and origin of imported amphibians were collected for 59 consignments arriving at HARC between November 2009 and June 2012, along with a surveillance study to investigate the prevalence of Bd in these animals. Forty three amphibian genera were recorded, originating from 12 countries. It was estimated that 5000 – 7000 amphibians are imported through HARC into the UK annually for the pet trade. Bd was detected in consignments from the USA and Tanzania, in six genera, resulting in an overall prevalence of 3.6%. This suggests that imported amphibians are a source of Bd within the international pet trade
    • …
    corecore